Thm: T and T' are always orthogonal.

Proof: Since $T \cdot T = |T|^2 = 1$, we differentiate both sides to get $T' \cdot T + T \cdot T' = 0$.

So $2\mathbf{T} \cdot \mathbf{T}' = 0$.

Thus, $T \cdot T' = 0$. (QED)

13.3 Measurements on Curves in 3D Today: Unit Tangent and Normal, Arc Length, and Curvature

Entry Task

Consider $\mathbf{r}(t) = \langle t, t^2, 5 \rangle$. Find the unit tangent vector $\mathbf{T}(t)$.

$$\frac{1}{|t|} = \langle 1, 2t, 0 \rangle$$

$$\frac{1}{|t'(t)|} = \sqrt{1 + 4t^2 + 0}$$

$$\frac{1}{|t|} = \langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \rangle$$

$$\frac{d}{dt} \left((1+4t^{2})^{\frac{1}{2}} \right) = -\frac{1}{2} \left((1+4t^{2})^{\frac{1}{2}} \right) = \frac{-4t}{(1+4t^{2})^{\frac{1}{2}}}$$

$$\frac{d}{dt} \left(\frac{2t}{(1+4t^{2})^{\frac{1}{2}}} \right) = \frac{\sqrt{1+4t^{2}} \cdot 2 - 2t}{1+4t^{2}} \frac{8t}{\sqrt{1+4t^{2}}} \sqrt{1+4t^{2}}$$

$$= \frac{(1+4t^{2}) \cdot 2 - 8t^{2}}{(1+4t^{2})^{\frac{1}{2}}}$$

$$= \frac{2}{(1+4t^{2})^{\frac{1}{2}}}$$

$$= \frac{2}{(1+4t^{2}$$

13.3 Measurements on Curves in 3D

Distance Traveled on a Curve

The dist. traveled along a curve from t = a to t = b is

$$\int_{a}^{b} |r'(t)| dt = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

Note: 2D is same without the z'(t). We derived this in Math 125.

Examples:

1. Find the length of the curve $r(t) = \langle 1 + 3t, 2t, 5t \rangle$ from t = 0 to t = 2.

$$x'(t) = 3$$

 $y'(t) = 2$
 $z'(t) = 5$

DISTANCE =
$$\int_{0}^{2} \sqrt{(3)^{2} + (2)^{2} + (5)^{2}} dt$$

= $\int_{0}^{2} \sqrt{9 + 4 + 25} dt$
= $\int_{0}^{2} \sqrt{38} dt$
= $\sqrt{38} t |_{0}^{2}$

NOTE: LINEAR MOTTON

13.3 Measurements on Curves in 3D

Goal: distance/arc length, unit tangent, unit normal, curvature.

Entry Task: Find the length of the curve $r(t) = \langle \cos(2t), \sin(2t), 2 \ln(\cos(t)) \rangle$ $\frac{r(t)}{6 + \frac{1}{2}} \times \frac{1}{2} \times \frac{1$

 $y'(t) = 2\cos(2t)$

Distance Traveled on a Curve

The dist. traveled along a curve from t = a to t = b is

$$\int_{a}^{b} |r'(t)| dt = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

Note: 2D is same without the z'(t). We derived this in Math 125.

If the curve is "traversed once" we call this arc length.

$$= \int_{0}^{7/3} |4\sin^{2}(2t) + 4\cos^{2}(2t) + 4\tan^{2}(t)| dt$$

$$= \int_{0}^{7/3} |4 + 4\tan^{2}(t)| dt$$

$$= 2 \int_{0}^{7/3} |4 + 4\tan^{2}(t)| dt$$

$$= 2 \int_{0}^{7/3} |5ec^{2}(t)| dt$$

2'(+) = 2 - 10 = 2 for (4)

$$= 2 \ln |\sec(\frac{\pi_3}{2}) + \tan(\frac{\pi_3}{3})| - 2 \ln |\sec(0) + \tan(0)|$$

$$= 2 \ln |2 + \sqrt{3}| \approx 2.63$$

Example: x = cos(t), y = sin(t)

- (a) Find the distance traveled by this object from t = 0 to $t = 6\pi$.
- (b) Find the arc length of the path over which this object is traveling.

Arc Length Function

The distance from 0 to t is called the arc length function

$$s(t) = \int_{0}^{t} |\vec{r}'(u)| du = \text{distance}$$

Note:

$$\frac{ds}{dt} = |\vec{r}'(t)| = \text{speed}$$

Example:
$$x = 3 + 2t$$
, $y = 4 - 5t$

- (a) Find the arc length (from 0 to t).
- (b) **Reparameterize** in terms of s(t).

$$s(t) = \int_{0}^{t} |\vec{r}'(u)| du = \text{distance}$$

$$s = \int_{0}^{t} \sqrt{29} \, du$$

$$= \int_{0}^{t} \sqrt{29} \, du$$

$$\Rightarrow \int_{0}^{t} \sqrt{29} \,$$

Unit Tangent & Principal Unit Normal

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \text{unit tangent}$$

$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \text{principal unit normal}$$

Example:

$$\vec{r}(t) = \langle 2\sin(3t), t, 2\cos(3t) \rangle$$

Find $\overline{\pmb{T}}(\pi)$ and $\overline{\pmb{N}}(\pi)$

Why does this work?

T and T' are always orthogonal.

Proof:

Since $\mathbf{T} \cdot \mathbf{T} = |\mathbf{T}|^2 = 1$, we can differentiate both sides to get

$$T' \cdot T + T \cdot T' = 0.$$

So
$$2\mathbf{T} \cdot \mathbf{T}' = 0$$
.
Thus, $\mathbf{T} \cdot \mathbf{T}' = 0$. (QED)

Some TNB-Frame Facts:

• $\overrightarrow{T}(t)$ and $\overrightarrow{N}(t)$ point in the tangent and *inward* directions, respectively. Together they give a good approximation of the "plane of motion". This "plane of motion" that goes through a point on the curve and is parallel to $\overrightarrow{T}(t)$ and $\overrightarrow{N}(t)$ is called the *osculating* (kissing) plane.

• $\overrightarrow{T}(t)$, $\overrightarrow{N}(t)$, $\overrightarrow{r}'(t)$, and $\overrightarrow{r}''(t)$ are ALL parallel to the osculating plane. We also define

$$\overrightarrow{B}(t) = \overrightarrow{T}(t) \times \overrightarrow{N}(t) = \text{binormal}$$

which is orthogonal to all
of $\overrightarrow{T}(t)$, $\overrightarrow{N}(t)$, $\overrightarrow{r}'(t)$, and $\overrightarrow{r}''(t)$.

Curvature

The **curvature** at a point, *K*, is a measure of how quickly a curve is changing direction at that point.

Roughly, how much does your direction a change if you move a small amount ye is ("one inch") along the curve?

$$K \approx \left| \frac{\overrightarrow{T_2} - \overrightarrow{T_1}}{\text{"one inch"}} \right| = \left| \frac{\Delta \overrightarrow{T}}{\Delta s} \right|$$

That is, we define

$$K = \frac{change\ in\ direction}{change\ in\ distance}$$

So we define:

Computation

$$K = \left| \frac{d\overline{T}}{ds} \right|$$

is not easy to compute directly, so we derive some *shortcuts*

1st shortcut:

$$K(t) = \left| \frac{d\vec{T}}{ds} \right| = \left| \frac{d\vec{T}/dt}{ds/dt} \right| = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|}$$

2nd shortcut

$$K(t) = \left| \frac{d\vec{T}}{ds} \right| = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3}$$

$$\text{TAKES Some}$$
Work To Derive
$$\text{(SEE LATER IN THESE)}$$

Example: Find the curvature function for $r(t) = \langle t, \cos(2t), \sin(2t) \rangle$.

$$r'(t) = \langle 1, -2\sin(2t), 2\cos(2t) \rangle$$

 $r''(t) = \langle 0, -4\cos(2t), 4\sin(2t) \rangle$

$$|\mathbf{r}'(t)| = \sqrt{1 + 4\sin^2(2t) + 4\cos^2(2t)}$$

so $|\mathbf{r}'(t)| = \sqrt{5}$

$$r'(t) \times r''(t) = \langle -8, -4\sin(2t), -4\cos(2t) \rangle$$

So $|r'(t) \times r''(t)| = \sqrt{64 + 16} = \sqrt{80}$

$$\frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|^3} = \frac{\sqrt{80}}{\sqrt{5}^3} = \sqrt{\frac{80}{125}} = 0.8$$

This curve has constant curvature!

Proof of shortcut:

Theorem:
$$\frac{|T'(t)|}{|r'(t)|} = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3}$$

Proof:

Since
$$T(t) = \frac{r'(t)}{|r'(t)|'}$$
, we have $r'(t) = |r'(t)|T(t)$.

Differentiating this gives (prod. rule):

$$\mathbf{r}''(t) = |\mathbf{r}'(t)|'\mathbf{T}(t) + |\mathbf{r}'(t)|\mathbf{T}'(t).$$

Take cross-prod. of both sides with T:

$$T \times r'' = |r'|' (T \times T) + |r'| (T \times T').$$

Since
$$T \times T = < 0, 0, 0 > \text{(why?)}$$

and $T = \frac{r'}{|r'|'}$, we have
$$\frac{r' \times r''}{|r'|} = |r'| (T \times T').$$

Taking the magnitude gives (why?)

$$\frac{|\boldsymbol{r}'\times\boldsymbol{r}''|}{|\boldsymbol{r}'|}=|\boldsymbol{r}'|\;|\boldsymbol{T}\times\boldsymbol{T}'|=|\boldsymbol{r}'|\;|\boldsymbol{T}||\boldsymbol{T}'|sin\left(\frac{\pi}{2}\right),$$

Since |T| = 1, we have

$$|T'| = \frac{|r' \times r''|}{|r'|^2}$$

Therefore

$$K = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|} = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3}.$$

Note: To find curvature for a 2D function, y = f(x), we can form a 3D vector function as follows

$$\mathbf{r}(x) = \langle x, f(x), 0 \rangle$$
so $\mathbf{r}'(x) = \langle 1, f'(x), 0 \rangle$ and
$$\mathbf{r}''(x) = \langle 0, f''(x), 0 \rangle$$

$$|\mathbf{r}'(x)| = \sqrt{1 + (f'(x))^2}$$

$$\mathbf{r}' \times \mathbf{r}'' = \langle 0, 0, f''(x) \rangle$$

Thus,

$$K(x) = \frac{|\mathbf{r}' \times \mathbf{r}''|}{|\mathbf{r}'|^3} = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{3/2}}$$

$$k(t) = \frac{2}{(1 + 4t^2)^{3/2}} = 2 (1 + 4t^2)^{3/2}$$

$$k'(t) = -3(1 + 4t^2)^{3/2} = 0$$

$$k'(t) = -3(1 + 4t^2)^{3/2}$$

f(t)=t²

Example: $f(t) = t^2$ Consider $x = t, y = t^2, z = 0$. At what point (x, y, z) is the curvature maximum?

$$f''(t) = 2$$

$$K = \frac{2}{(1+(2t)^{3})^{3}}$$

$$k(t) = \frac{2}{(1+4t^{3})^{3}} = 2(1+4t^{3})^{3}$$

naxinua Cunvature

Summary of 3D Curve Measurement Tools:

Given
$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$$

$$\vec{r}'(t)$$
 = a tangent vector

$$s(t) = \int_0^t |\vec{r}'(t)| dt$$

$$K = \left| \frac{d\vec{T}}{ds} \right| = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3}$$

$$\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \text{unit tangent}$$

$$\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \text{principal unit normal}$$